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Big picture: Positioning and Mapping
FHWA Project: Precision Mapping: Objectives & Approach

FHWA Exploratory Advanced Research Project in Precise
Vehicle Positioning: Objectives & Approach

Latest Results and Applications
Interesting Directions



Mapping and Positioning Research to
Support Lane-Level ITS Applications

Objectives:

 To analyze mapping and positioning technologies:
— Automated and sensor-based for low-cost map production

— High precision for next-generation (lane-level) applications

(Lane Departure Warning, Curve Overspeed Warning, Signal Phase and
Timing, by lane, Intersection management and collision avoidance, etc.)

— Most precise mapping and positioning for ITS research is
based on relative coordinates rather than absolute
coordinates

Such applications are transformative improvements for
safety, mobility, and environmental performance
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Precision Real-time Positiczg'ing

e Many ITS Applications need Positioning f
with high degrees of: ﬁ] I v

— Accuracy — Less than one meter
— Continuity — High sample rate

— Availability — Works in diverse
environments

— Accomplished at a Low Cost @
e Solution: Sensor Fusion using o ~
* |nertial Measurement Unit e Feature sensors: RADAR, LIDAR, Camera
e Differential GPS e Existing Infrastructure
ITS Safety Example Applications: ITS Mobility Example Applications:
lane-departure warning, freeway merge vehicle navigation assistance, congestion

assistance, intersection collision avoidance, warning systems, adaptive cruise control, and
curve over-speed warning parking assistance



Aiding Sensor Categories
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GNSS: Proven with open skies. Challenging in urban environments.

TRN: Shows great promise as physical layer timing advances
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Modernization
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FB: Assessed as viable if precision roadway feature maps are available. Research leading FB
positioning demonstrations was the project focus after year one.




Precision Mapping & Real-time Positioning
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Feature based positioning and ITS application performance are
enabled and enhanced by precise roadway feature maps.



Precise Roadway Feature Maps

 Analyze, develop, & demonstrate roadway feature
mapping technologies:
— Automated and sensor-based for low-cost map production
— High precision (decimeter) for next-generation applications

* Lane departure warnin.g » Signal Phase and Timing by lane
* Curveoverspeed warning . |ntersection management and collision
* Headlight steering into avoidance

curves
Such applications are transformative improvements for safety,

mobility, and environmental performance

 Roadway features: Road & lane edges, Sign type & location,
Street and stop lights, stop bars, ...



Camera

Sensor Bytes/Msg. Msgs./sec Bytes/Sec GB/Hr GB/Hr (with
timestamp overhead)
IMU 19 200 3800 0.013 0.232
LIDAR 1206 3473 4,188,438 15.08 15.278
Camera 35,836,416 7.5 268,773,120 967.583232 967.583
GPS measurement 612 1 612 0.002 0.0374
data
GPS Ephemeris data 256 .002 512 1.8432e-6 3.13344e-5
DGPS data 1071 1 1071 0.0038 0.0039
Total: 273 MB /sec 982 GB/Hr 983 GB/Hr
Hrs. of collection per TB: =1 Hr.
Miles of coverage per TB (assuming a speed of 30 mph): =30 miles




* GNSS Receiver

* High capacity HD

¢ Roof Platform

* Power supply

e Matlab

e DGPS station

e Data Communication
e GIS

* High Performance CPU
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LIDAR IMU GNSS Vision
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Driving and data collection ...




LIDAR IMU GNSS Vision
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Envrannents Reseah & Teshnolg ‘
Trajectory Estimation

« Solve for Integer Ambiguity

— Smooth trajectory using
inertial measurements,
pseudo-range, and Doppler
measurements
— Use smooth trajectory to find : .
integer intervals Z e
— Extend integers from known I
intervals to adjacent intervals  ° ‘
 Final Trajectory Smoothing T 9y
— Use integers when available, i g
otherwise, use pseudo-range | D e
and Doppler ° )

« Can be Utilized Extensively in
Mapping

e See: A Vuetal, (2012) “Improved Vehicle Trajectory and State Estimation using Raw GPS and IMU
Data Smoothing”, in press, IEEE Intelligent Vehicle Symposium, Madrid Spain, June 2012.




Data Acquisition
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signs, lane
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e &5
Feature Extraction and ldentification (1)

o Traffic Sign Extraction
— Primary sensor: LIDAR 64-laser, 20 Hz laser range finder
— Processing step 1: Feature Detection
 From projected measurement images of intensity and range
e Output: Candidates in LIDAR frame (each has a position & normal)
— Processing step 2: Feature Association
« Output: Candidate features grouped to objects
— Processing step 3: Optimization
 Transformation of features from LIDAR to ECEF

« Optimal combination of grouped features to estimate sign position
and normal

o Traffic Sign Verification
— Primary sensor: LIDAR candidates and camera
— Processing: Template matching based on extracted signs
— Qutput: Tags are given to traffic signs extracted from the previous step



Road Signs Locations




Estimated vs. Surveyed Points

@ estimated
X surveyed




I College of Engineering- Center for
Environmental Research & Technology

Surveyed Plane Position

Estimated Plane Position vs.

Sign Post | Survey North Survey East Max Survey Computed Computed Abs. Horiz.
# (m) (m) ECEF Std (m) North (m) East (m) Error (m)
1 -41.192 -87.313 0.042 -41.133 -87.345 0.067
2 -55.321 -62.332 0.126 -55.271 -62.328 0.050
3 -89.666 -36.001 0.159 -89.656 -36.112 0.111
4 -142.194 80.051 0.057 -142.244 80.054 0.050
5 -139.078 146.342 0.047 -139.101 146.358 0.028
6 -115.571 144.863 0.009 -115.658 144.923 0.106
7 -85.860 141.540 0.031 -85.882 141.543 0.022
8 -47.903 122.360 0.025 -47.952 122.415 0.073
9 -35.369 99.666 0.045 -35.381 99.686 0.023
10 -44.498 101.259 0.024 -44.433 101.281 0.068
11 -62.597 125.258 0.04 -62.555 125.306 0.063
12 -134.138 76.493 0.025 -134.073 76.519 0.069
13 -104.598 -4.185 0.061 -104.569 -4.152 0.044
16 -118.704 133.631 0.015 -118.618 133.724 0.126




Sign Identification Process
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Feature Extraction and Identification (2)

 Curve Extraction
— Primary sensor: LIDAR 64-laser, 20 Hz laser range finder
— Processing step 1:
e Ground plane image projection from measurements
e QOutput: intensity as a function of position

— Processing step 2:
e Curve detection using projected vehicle trajectory on ground plane images
e OQOutput: Curves composed of a set of sequential 3D positions in world frame

 Curve Parameterization
— Primary input: curves from previous step
— Processing step: Curve Fitting
— Output: roadway curve format suitable for GIS



LIDAR Intensity Point Cloud...




Finding Lanes and Curves




LIDAR IMU GNSS Vision

N VS

[HD: Stored Raw Sensor Data ]

Data Acquisition

Relative map IMU & GNSS Sensor
features are Trajectory Optimization
combined £ Initial Smoothed l

with & MU ‘{'rajecmr}r ‘4
absolute o« Feature Extraction,
trajectory = Tracking, & lIdentification
and placed % Feﬂ%ﬁ:ﬂﬁ?iﬁﬂ?”l l l 1 l

in GIS LIDAR, Vision, GNSS, IMU
database in » | Feature Map &Trajectory Optimization
world Feature Locations

coordinates in Geodetic Frame

Roadway Feature
GIS Database

22




Mapping Data
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Map Representation in ArcGIS

Bing Map, TFHRC Aerial Image, LIDAR-based intensity image overlay
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Mapping Data
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Application Data Flow
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Application Graphical User Interface...
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Lane Departure Warning...
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Curve Overspeed Warning...
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Sign (Vision) and Code DGPS aided INS




Conclusions (1 of 2)

No single independent sensor technology is capable of
simultaneously attaining the accuracy, integrity, and availability
specifications for lane-level positioning in the expected diverse
environments

Integrated positioning that fuses asynchronous data from diverse
sensors is the best approach to reliably and accurately estimate
vehicle position

Inertial Navigation Systems and Encoder Navigation Systems provide
positioning solutions in all environments continuously at high rates;
however their accuracy drifts over time without aiding;



Conclusions (2 of 2)

GNSS provide high accuracy at low bandwidth in open areas where
satellite signals can be received; however performance degrades in
dense urban areas

Feature-based navigation aiding using camera, LIDAR, or RADAR can
be successful when mapped features can be reliably detected and
tracked

Several forms of ground based radio communication systems offer
potentially useful position information, have been designed to
penetrated the urban infrastructure, and have the added advantage
that their performance characteristics can still be influenced by the
engineering community interested in roadway applications.



